Chemo- and Regioselective Lysine Modification on Native Proteins

نویسندگان

  • Maria J Matos
  • Bruno L Oliveira
  • Nuria Martínez-Sáez
  • Ana Guerreiro
  • Pedro M S D Cal
  • Jean Bertoldo
  • María Maneiro
  • Elizabeth Perkins
  • Julie Howard
  • Michael J Deery
  • Justin M Chalker
  • Francisco Corzana
  • Gonzalo Jiménez-Osés
  • Gonçalo J L Bernardes
چکیده

Site-selective chemical conjugation of synthetic molecules to proteins expands their functional and therapeutic capacity. Current protein modification methods, based on synthetic and biochemical technologies, can achieve site selectivity, but these techniques often require extensive sequence engineering or are restricted to the N- or C-terminus. Here we show the computer-assisted design of sulfonyl acrylate reagents for the modification of a single lysine residue on native protein sequences. This feature of the designed sulfonyl acrylates, together with the innate and subtle reactivity differences conferred by the unique local microenvironment surrounding each lysine, contribute to the observed regioselectivity of the reaction. Moreover, this site selectivity was predicted computationally, where the lysine with the lowest p Ka was the kinetically favored residue at slightly basic pH. Chemoselectivity was also observed as the reagent reacted preferentially at lysine, even in those cases when other nucleophilic residues such as cysteine were present. The reaction is fast and proceeds using a single molar equivalent of the sulfonyl acrylate reagent under biocompatible conditions (37 °C, pH 8.0). This technology was demonstrated by the quantitative and irreversible modification of five different proteins including the clinically used therapeutic antibody Trastuzumab without prior sequence engineering. Importantly, their native secondary structure and functionality is retained after the modification. This regioselective lysine modification method allows for further bioconjugation through aza-Michael addition to the acrylate electrophile that is generated by spontaneous elimination of methanesulfinic acid upon lysine labeling. We showed that a protein-antibody conjugate bearing a site-specifically installed fluorophore at lysine could be used for selective imaging of apoptotic cells and detection of Her2+ cells, respectively. This simple, robust method does not require genetic engineering and may be generally used for accessing diverse, well-defined protein conjugates for basic biology and therapeutic studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective chemical protein modification.

Chemical modification of proteins is an important tool for probing natural systems, creating therapeutic conjugates and generating novel protein constructs. Site-selective reactions require exquisite control over both chemo- and regioselectivity, under ambient, aqueous conditions. There are now various methods for achieving selective modification of both natural and unnatural amino acids--each ...

متن کامل

Chemo-/regioselective synthesis of 6-unsubstituted dihydropyrimidinones, 1,3-thiazines and chromones via novel variants of Biginelli reaction.

A novel and facile cascade Biginelli-like assembly employing enaminone, aldehyde and urea/thiourea has been developed, which provides a highly chemo- and regioselective synthesis of new dihydropyrimidinones, 1,3-thiazines and chromones by altering particular functional groups in the reactants.

متن کامل

Structure-sweetness relationship in thaumatin: importance of lysine residues.

To clarify the structural basis for the sweetness of thaumatin I, lysine-modified derivatives and carboxyl-group-modified derivatives were prepared by chemical modification followed by chromatographic purification. The sweetness of derivatives was evaluated by sensory analysis. Phosphopyridoxylation of lysine residues Lys78, Lys97, Lys106, Lys137 and Lys187 markedly reduced sweetness. The inten...

متن کامل

Chemo- and regioselective reductive transposition of allylic alcohol derivatives via iridium or rhodium catalysis.

We report highly chemo- and regioselective reductive transpositions of methyl carbonates to furnish olefin products with complementary regioselectivity to that of established Pd-catalysis. These Rh- and Ir-catalysed transformations proceed under mild conditions and enable selective deoxygenation in the presence of functional groups that are susceptible to reduction by metal hydrides.

متن کامل

Rhodium-catalyzed chemo- and regioselective decarboxylative addition of β-ketoacids to allenes: efficient construction of tertiary and quaternary carbon centers.

A rhodium-catalyzed chemo- and regioselective intermolecular decarboxylative addition of β-ketoacids to terminal allenes is reported. Using a Rh(I)/DPPF system, tertiary and quaternary carbon centers were formed with exclusively branched selectivity under mild conditions. Preliminary mechanism studies support that the carbon-carbon bond formation precedes the decarboxylation and the reaction oc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 140  شماره 

صفحات  -

تاریخ انتشار 2018